Simetrias noutras métricas
Todas as simetrias das quatro imagens da figura seguinte são também simetrias para a métrica do táxi.
O mesmo não acontece com as da figura seguinte.
Das quatro imagens, apenas a primeira da segunda linha conserva, na métrica do táxi, as mesmas simetrias da métrica euclidiana: quatro reflexões em eixos com ângulos 0, Pi/2, Pi, 3Pi/2 e quatro rotações, compostas dessas reflexões duas a duas.
Na figura seguinte, relativamente à métrica do táxi, estão indicadas quatro imagens: as da primeira linha exactamente com as mesmas simetrias (4 rotações de múltiplos de Pi/2), e as da segunda linha ambas com as mesmas simetrias (4 reflexões com eixos fazendo com a horizontal ângulos de múltiplos de Pi/4 e rotações delas decorrentes).
Tem interesse destacar que a segunda imagem da primeira linha tem, na métrica euclidiana, o dobro das simetrias de rotação que tem na métrica do táxi; as outras três têm, nas duas métricas, exactamente as mesmas simetrias.
Pode usar a aplicação interactiva seguinte e descobrir experimentalmente algumas das diferenças entre as métricas euclidiana e do táxi em relação à isometria reflexão.
A traço-ponto, a preto, está representado o eixo de simetria para a métrica usual. Se o tracejado aparecer a preto grosso, trata-se de uma simetria também para a métrica do táxi. Variando a figura, esse eixo de simetria conserva-se. No caso de três pontos, a figura conserva aquele eixo de simetria.
Voltando ao caso geral, tracejado preto fino, para certas posições dos segmentos poderá aparecer um tracejado grosso colorido. Isso traduz que os comprimentos do segmento dessa cor e do seu transformado coincidem, mas não necessariamente as outras cores.