Summary of Denotations: Introduction
The symbols with the remark keyboard? may be produced by your keyboard and accepted by the translator; please test.
For more information read the section on commands and environments of the technical documentation.
final form | input | ||
---|---|---|---|
percentage | \(\%\) | \ % |
|
Euro symbol | € | \ euro{} |
(1) keyboard? |
braces | \(\{\) \(\}\) | \ { \ } |
|
ordinal numbers | \(1.o\) \(1.as\) | 1.o 1.as | (2) |
digit separator | \(5.630\) ou \(5\;630\) | 5\ sepmil630 |
|
start expression | \(a-b\) | $a-b$ | |
number separator | \(2\;3/4\) | $2\ sepnum3/4$ |
|
multiplication | \(a\times b\) | $a\ times b$ |
keyboard? |
not equal | \(a\neq b\) | $a\ neq b$ |
|
approximately equal to | \(a\approx b\) | $a\ approx b$ |
|
fraction | \(\frac{3}{4}\) | $\ frac{3}{4}$ |
(3) |
square root | \(\sqrt{a-2b}\) | $\ sqrt{a-2b}$ |
|
other radicals | \(\sqrt[n]{a-2b}\) | $\ sqrt[n]{a-2b}$ |
|
angular degree | \(90^\circ\) | $90\ grau$ |
keyboard? |
infinity | \(\infty\) | $+\ infty$ |
|
exponent | \(a^{n+1}\) | $a^{n+1}$ | (4) |
index | \(a_{n+1}\) | $a_{n+1}$ | |
such that (sets) | \(\{x | a<x<b\}\) | $\ {x \ talque a<x<b\ }$ |
|
in | \(x\in \{1, 2, 3\}\) | $x\ in\ {1,2,3\ }$ |
|
empty set | \(\emptyset\) | $\ emptyset$ |
|
union | \(A=B\cup C\) | $A=B\ cup C$ |
|
intersection | \(A=B\cap C\) | $A=B\ cap C$ |
|
set subtraction | \(A=B\setminus C\) | $A=B\ setminus C$ |
|
subset of | \(A\subset B\) | $A\ subset B$ |
|
subset or equal | \(A\subseteq B\) | $A\ subseteq B$ |
|
superset of | \(A\supset B\) | $A\ supset B$ |
|
superset or equal | \(A\supseteq B\) | $A\ supseteq B$ |
|
iterated union | \(A=\bigcup_i B_i\) | $A=\ bigcup_i B_i$ |
|
iterated intersection | \(A=\bigcap_i B_i\) | $A=\ bigcap_i B_i$ |
|
Greek letters: see this table | |||
simple arrows | \(a\rightarrow b, x\leftrightarrow y\) | $a\ rightarrow b, x\ leftrightarrow y$ |
(5) |
\(a\uparrow b, b\downarrow c, x\updownarrow y, z\nwarrow w\) | $a\ uparrow b, b\ downarrow c, x\ updownarrow y, z\ nwarrow w$ |
||
double arrows (Logic) | \(a\Rightarrow b, b\Leftarrow a, x\Leftrightarrow y\) | $a\ Rightarrow b, b\ Leftarrow a, x\ Leftrightarrow y$ |
|
overlines | \(\bar{a}, \overline{abc}\) | $\ bar{a}, \ overline{abc}$ |
|
vectors | \(\vec{v}, \overrightarrow{abc}, \overleftarrow{cba}, \overleftrightarrow{ab}\) | $\ vec{v}, \ overrightarrow{abc}, \ overleftarrow{cba}, \ overleftrightarrow{ab}$ |
|
hats | \(\hat{a}, \widehat{abc}\) | $\ hat{a}, \ widehat{abc}$ |
|
limits | \(\lim f(x), \lim_{X->C}\) | $a=\ lim, \ lim_{X\ rightarrow C}$ |
|
definite integrals | \(a=\int_m^n\, f(x)dx\) | $a=\ int_m^n\, f(x)dx$ |
(6) |
\(a=\int_\frac{m}{n}^{m+n} f(x)dx\) | $a=\ int_\ frac{m}{n}^{m+n} f(x)dx$ |
||
simple and multiple integrals | \(\int, \iint, \iiint\) | $\ int, \ iint, \ iiint$ |
|
line integrals | \(\oint, \oint_C\) | $\ oint, \ oint_C$ |
(1) You may omit the braces if immediately after there is not a space, a newline nor a letter. The use of braces before a letter indicates the end of the command name, while before spaces or a newline avoids that these characters are ignored as separators.
(2) If your keyboard produces the characters "a" or "o" the translator may also accept them in ordinal numbers; please test. But you cannot use them as exponents!
(3) If your keyboard lets you type each of the fractions 1/4, 1/2, 3/4 as a single character, the translator may also accept them; please test!
(4) If your keyboard produces the characters "a" or "o" you cannot use them as exponents! If it produces the characters "1", "2" and "3" the translator may accept them as exponents (always in an expression).
(5) Both arrows here have two Braille codings depending on being used in applications (functions) or not. At present the translator only generates the ones not for applications. The left arrow is not supported as its coding is not known.
(6) The command \
overleftrightarrow is defined by the
LaTeX AMS package.
(7) Notice the use of a spacing command between the n and the f avoiding a blank between letters that would raise an error. Instead of this, n could appear in braces.