Is \(\pi\) normal? Try it here
On this page we propose the following:
in the field "Number of digits" choose the order of magnitude of the numbers that the program will generate randomly. Then, a Table will be constructed where, for each of these numbers, the number of its occurrences in the first \(1\,000\), \(10\,000\), \(100\,000\),
\(\ldots\), \(1\,000\,000\,000\) significant figures of \(\pi\) will be represented.
Note: The next page is very demanding and can take a few minutes to appear.
Example, for Number of digits= 3,
\(10^3\) | \(10^4\) | \(10^5\) | \(10^6\) | \(10^7\) | \(10^8\) | \(10^9\) | |
\(865\) | 2 | 14 | 113 | 1004 | 9913 | 99664 | 1000046 |
\(585\) | 1 | 8 | 107 | 978 | 9922 | 98498 | 989805 |
\(142\) | 1 | 16 | 103 | 1004 | 10014 | 100301 | 999829 |
\(815\) | 2 | 12 | 105 | 1009 | 9848 | 99542 | 998577 |
\(650\) | 0 | 5 | 104 | 1041 | 10207 | 100237 | 999627 |
\(384\) | 4 | 9 | 100 | 990 | 10040 | 100282 | 1001342 |
\(315\) | 1 | 10 | 92 | 950 | 9890 | 99703 | 999335 |
\(740\) | 0 | 2 | 87 | 950 | 9997 | 99725 | 1000436 |
\( 464\) | 0 | 12 | 116 | 1026 | 9968 | 98555 | 988914 |
\(534\) | 4 | 10 | 112 | 967 | 10015 | 99990 | 999857 |
\(455\) | 1 | 13 | 107 | 1046 | 10018 | 99813 | 1000578 |
\(384\) | 4 | 9 | 100 | 990 | 10040 | 100282 | 1001342 |
\(658\) | 1 | 17 | 98 | 976 | 9875 | 99549 | 1000566 |
\(755\) | 1 | 7 | 101 | 1035 | 10011 | 99700 | 998776 |
\(306\) | 1 | 14 | 101 | 947 | 9734 | 99472 | 999432 |
\(443\) | 0 | 7 | 95 | 921 | 9217 | 91404 | 908194 |
\(574\) | 0 | 11 | 98 | 990 | 9901 | 100373 | 1001248 |
Suggestion: analyze, for each of the columns, the order of magnitude of the different occurrences.
Repeat the experiment for sequences with other orders of magnitude.