Computing \(\pi\) over time

The following tables present some results computed for the value of \(\pi\) throughout the ages.

Source/Author Date Approximation Value
Babylon 2000 B.C. \(3+\frac{1}{8}\) \(3.125\)
Egypt
Ahmes papyrus
1650 B.C. \((\frac{16}{9})^{2}\) \(3.1605\)
Archimedes 250 B.C. \(3\frac{10}{71}<\pi<3\frac{1}{7}\) \(3.14185\)
Ptolomeu 150 A.D. \(\frac{377}{120}\) \(3.14166\)
Tsu Chung Chih 480 \(\frac{355}{113}\) \(3.141592\)
Simon Duchesne 1583 \((\frac{39}{22})^{2}\) \(3.14256\)

Source/Author Date Approximation
or
Method Used
Number of Correct Decimals Computing time
Ludolph Van Ceulen 1609 Archimedes Method \(34\)  
Sharp 1705   \(72\)  
Machin 1706 Machin Formula \(100\)  
De Lagny 1719   \(127\)  
Euler 1755 \(\frac{\pi}{4}=5\arctan\left(\frac{1}{7}\right)+\) \(\hspace{3ex}2\arctan\left(\frac{3}{79}\right)\) \(20\) \(<\) 1 hour
Shanks 1874 \(\arctan\) Formulas \(527\) 707 hours
Ferguson 1945 \(\arctan\) Formulas \(620\)  
Wrench & Levi 1948 \(\arctan\) Formulas \(808\)  
Smith & Wrench 1949 \(\arctan\) Formulas \(1\,120\)  
Reitweisner
ENIAC computer
1949 Machin Formula \(2\,037\) \(\approx\) 70 hours
Nicholson & Jeenel 1954 \(\arctan\) Formulas \(3\,092\)  
PEGUSUS computer 1957   \(10\,021\) \(\approx\) 33 hour
IBM 704 computer 1959   \(10\,000\) 1h40m
Shanks & Wrench
IBM 7090 computer
1961   \(100\,265\) 8 hours
Guilloud & Dichampt
CDC 6600 computer
1967   \(500\,000\) 44h 45m
Guilloud & Bouyer
CDC 7600 computer
1973   \(1 \,001 \,250\) 23h 18m
Miyoshi & Nakayana
FACOM M-200 computer
1981   \(2 \,000 \,038\)  
Kanada, Yoshino & Tamura
HITACHI S-810 computer
1982   \(16 \,777 \,206\)  
Chudnovsky brothers
IBM 3090 computer
1984   \(1 \,011 \,196 \,691\)  
Chudnovsky brothers 1994 Ramanujam Series \(4 \,044 \,000 \,000\)  
Takahashi-Kanada 1997 2th and 4th order
Borwein Algorithms
\(51 \,539 \,600 \,000\)  
Takahashi-Kanada 1999 Bren/Salamin Algorithm
4th order Borwein Algorithm
\(206 \,158 \,430 \,000\) (1)

(1) Record for the largest extension of digits of \(\pi\) in 2000