\(\pi\) na base 27
Para melhor se entender o significado da representação de \(\pi\) na base \(27\), recordemos que \[\pi=3.141592653...\]não é mais do que\[\pi=3+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\frac{9}{10^{5}}+\frac{2}{10^{6}}+\frac{6}{10^{7}}+\frac{5}{10^{8}}+\frac{3}{10^{9}}+...\]
Na base \(27\), os números são representados com os símbolos \[\left\{ 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q\right\},\] onde \(A\) representa o "dígito" \(10\), \(B\) o dígito \(11\), ..., \(Q\) representa o "algarismo" \(26\).
O que significa representar \(\pi\) na base \(27\)? \[\pi= 3.3M5Q3M2DCPQODJNGIG99AQ8N55DLG4I\\ ~\\ OFL0A836DF2P8J9ACGAJ310Q7OC8H...\]Isto não é mais que\[\pi=3+\frac{3}{27^{1}}+\frac{M}{27^{2}}+\frac{5}{27^{3}}+\frac{Q}{27^{4}}+\frac{3}{27^{5}}+\frac{M}{27^{6}}+\frac{2}{27^{7}}+\\ ~\\ ~\\ +\frac{D}{27^{8}}+\frac{C}{27^{9}}+\frac{P}{27^{10}}+\frac{Q}{27^{11}}+\frac{O}{27^{12}}+\frac{D}{27^{13}}+...\]Para que nesta expansão só existam letras e, portanto, tornar possível a procura de nomes em \(\pi\), fez-se ainda a seguinte correspondência \[0\rightarrow"";1\rightarrow A;2\rightarrow B;3\rightarrow C;4\rightarrow D;5\rightarrow E;6\rightarrow F;\\ ~\\ 7\rightarrow G;8\rightarrow H;9\rightarrow I;A\rightarrow J;B\rightarrow K;...;Q\rightarrow Z\]
Deste modo, passou a representar-se \[\pi =C.CVEZCVBMLYZXMSWPRPIIJZHWEEMUP\\ ~\\ DRXOUJHCFMOBYHSIJLPJSCA ZGXLH...\]